Modelling and simulation techniques for forced convection heat transfer in heat sinks with rectangular fins
نویسندگان
چکیده
This paper provides a comprehensive description of the thermal conditions within a heat sink with rectangular fins under conditions of cooling by laminar forced convection. The analysis, in which increasing complexity is progressively introduced, uses both classical heat transfer theory and a computational approach to model the increase in air temperature through the channels formed by adjacent fins and the results agree well with published experimental data. The calculations show how key heat transfer parameters vary with axial distance, in particular the rapid changes in heat transfer coefficient and fin efficiency near the leading edges of the cooling fins. Despite these rapid changes and the somewhat ill-defined flow conditions which would exist in practice at the entry to the heat sink, the results clearly show that, compared with the most complex case of a full numerical simulation, accurate predictions of heat sink performance are attainable using analytical methods which incorporate average values of heat transfer coefficient and fin efficiency. The mathematical modelling and solution techniques for each method are described in detail.
منابع مشابه
The Optimal Design of Heat Sinks: A Review
Heat sinks are used in industrial equipment to dissipate the excess heat from their heat-generating parts to the ambient. In the last few years, efforts on manufacturing electronic or mechanical devices with less weight, space, and lower cost were spent. Heat dissipation from the heat sink is stalling a big problem which many researchers are trying to solve. The aim of this study is to brief th...
متن کاملNumerical simulation of laminar convection heat transfer from an array of circular perforated fins
The present paper reports the laminar fluid flow and heat transfer of a heated array of circular-perforated and solid fins mounted over a flat surface using the finite-volume method. One to four circular cross-sectional perforations are made along the length of the fins. The SIMPLE algorithm is used for pressure-velocity coupling and the second order upwind technique is employed to discreti...
متن کاملHeat Transfer Study of Perforated Fin under Forced Convection
Fins are protrusions on a heat transfer surface to augment heat transfer rate from it. The increase in area exposed to convection in case of finned surfaces results in increased heat transfer rate. In this study heat transfer characteristics of a pin fin with perforation is numerically analyzed. A pin fin is fabricated and experiments are done under forced convection conditions. The experimenta...
متن کاملCooling Performance Analysis of Water-Cooled Heat Sinks with Circular and Rectangular Minichannels Using Finite Volume Method
In this paper, the cooling performance of water-cooled heat sinks for heat dissipation from electronic components is investigated numerically. Computational Fluid Dynamics (CFD) simulations are carried out to study the rectangular and circular cross-sectional shaped heat sinks. The sectional geometry of channels affects the flow and heat transfer characteristics of minichannel heat sinks. T...
متن کاملMixed Convection Flow in a Rectangular Ventilated Cavity with a Heat Conducting Solid Circular Cylinder at the Center
A numerical investigation has been carried out for mixed convection flow in a rectangularventilated cavity with a heat conducting solid circular cylinder at the center. Forced convection flowconditions were imposed by providing an inlet at the bottom of the left wall and an outlet vent at the topto the other sidewall. In this paper, the effect of cavity aspect ratio as well as the mixed convect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Simulation Modelling Practice and Theory
دوره 17 شماره
صفحات -
تاریخ انتشار 2009